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Abstract

An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced.
Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also
designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex
multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects
of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement
(DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have
time-dependent analytic solutions and exhibit localized flow features, including the 2D Burgers equation with straight,
curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes.
Quantitative errors are reported for 2D spatial and temporal convergence of DARe.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction: a need for high-accuracy dynamic adaptivity

Accurate and efficient simulation of strongly turbulent flows is a prevalent challenge in many atmospheric,
oceanic, and astrophysical applications. New simulation codes are needed to investigate such flows in the
parameter regimes that interest the geophysics communities. Turbulent flows are linked to many issues in
the geosciences, for example, in meteorology, oceanography, climatology, ecology, solar-terrestrial interac-
tions, and solar fusion, as well as dynamo effects, specifically, magnetic-field generation in cosmic bodies by
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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turbulent motions. Nonlinearities prevail when the Reynolds number Re is large. The number of 3-dimen-
sional degrees of freedom (d.o.f.) increases as Re9/4 as Re!1 in the Kolmogorov 1941 framework [16, Sec-
tion 7.4]. For aeronautic flows often Re > 106, but for geophysical flows often Re� 108 [11,28]. Also,
computations of turbulent flows must contain enough scales to encompass the energy-containing and dissipa-
tive scale ranges distinctly. Uniform-grid convergence studies on 3D compressible-flow simulations show that
in order to achieve the desired scale content, uniform grids must contain at least 20483 cells [33]. Today such
computations can barely be accomplished. A pseudo-spectral Navier–Stokes code on a grid of 40963 uni-
formly spaced points has been run on the Earth Simulator [19], but the Taylor Reynolds number ð/

ffiffiffiffiffiffi
Re
p
Þ

is still no more than �700, very far from what is required for most geophysical flows. The main goal of the

present code development is to ask, if the significant structures of the flow are indeed sparse, so that their
dynamics can be followed accurately even if they are embedded in random noise, then does dynamic adaptivity
offer a means for achieving otherwise unattainable large Re values. Thus, we have developed a dynamic geo-
physical and astrophysical spectral-element adaptive refinement (GASpAR) code for simulating and studying
turbulent phenomena.

Several properties of spectral-element methods (SEMs, [9,29]) make them desirable for direct numerical
simulation of geophysical turbulence. Perhaps most significant is the fact that SEMs performed at high poly-
nomial degree are inherently minimally diffusive and dispersive. This property is clearly important when trying
to simulate high-Re flows with multiple spatial and temporal scales that characterize turbulence. Also, because
SEMs use finite elements, they can be used in very efficient high-resolution turbulence studies in domains with
complicated boundaries. It is an important feature that SEMs are naturally parallelizable (e.g., [15]). Equally
important, SEMs not only provide spectral convergence when the solution is smooth (see Appendix
Eq. (A.3)), but are also effective when the solution is not smooth.

Our goal in this paper is to describe GASpAR and, in particular, the procedures used in our dynamic adap-
tive refinement (DARe) technique. We provide SEM and DARe algorithm details here that are not available
elsewhere, in the hope of supporting readers who wish to create their own codes. Furthermore, we propose
several linear and nonlinear problems as standards to test fundamental aspects of flows that are encountered
in turbulence studies, and use these to test our DARe algorithms. Because these problems have known exact
time-dependent solutions, quantitative errors can be reported for DARe simulations. Our code is object-
oriented, and we will describe how object-oriented programming serves our purposes. The code is parallelized,
but we will discuss this aspect only when it is intrinsic to the algorithms. While we are motivated by the
performance potential of SEMs generally [8,34], we do not emphasize performance metrics in the present
paper, in favor of focusing on algorithmic detail and solution accuracy.

First we describe (Section 2.2) SEM discretization on a particular class of problems and introduce many of
the required formulas, operators, and so forth. We explain (Section 2.4) how continuity is maintained between
non-conforming elements. We provide linear-solver details in Section 2.5, and introduce innovations required
to solve on non-conforming elements. In Section 2.6, we present our new adaptive-mesh algorithms: how
neighboring elements are found, how conformity is established, and the procedures for refinement and
coarsening. In Section 2.6.3, we describe a new implementation of element-boundary communication. DARe
criteria are discussed in Section 2.6.4. Then, in Section 3 we propose and perform examples from two test-
problem classes with time-dependent analytic solutions: the linear advection–diffusion equation (Section
3.2), demonstrating feature tracking of smooth and isolated features; and the 2D Burgers equation (Section
3.3), testing the ability of DARe to track well-defined increasingly sharp structures arising from nonlinear
dynamics. In Section 4, we offer some conclusions, as well as comments on potential application of GASpAR
to geophysical turbulence simulations.

2. Temporal and dynamically adaptive spatial discretizations

2.1. Adaptive-mesh geometry

Conforming adaptive methods (where entire element boundaries geometrically coincide, as in Fig. 1a) on
quadrilaterals and hexahedra are gradually being replaced by non-conforming adaptive methods. One reason
is that locally adaptive mesh generation for conforming methods is complicated [30]. Another reason is that
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Fig. 1. (a) Conforming degree p = 2 mesh showing the mapping of global (i.e., unique) d.o.f. in the domain �D to local (i.e., redundant)
d.o.f. in the elements Ek . Edge subscripts give element key k and edge index from s = 0 counterclockwise to s = 3. Element E1 is bounded at
the east by oE1;1 and E2 at the west by oE2;3 ¼ oE1;1. Interface matching occurs by assignment, so the assembly matrix Ac is Boolean. (b)
Geometrically non-conforming (functionally conforming) mesh. Here E2 and E3 are bounded at the west by ‘‘child’’ edges oE2;3 and oE3;3,
and E1 is bounded at the east by the ‘‘parent’’ edge oE1;1 ¼ oE2;3 [ oE3;3. Interface matching occurs by interpolation of global d.o.f. from the
function space associated with oE1;1 onto the union of those associated with the oEk;3, which contains the function space of oE1;1.
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adaptive conforming meshes can lead to high-aspect-ratio elements that can cause difficulties for a linear sol-
ver [13]. Moreover, the fact that non-conforming elements can better localize mesh refinement implies that the
computational cost over all elements can be reduced [24].

Non-conforming elements can be geometrically and/or functionally non-conforming. In the former case
(Fig. 1b), neighboring-element boundaries do not entirely coincide; in the latter, the polynomial expansion
degree p in neighboring elements differs. Several SEM researchers have adopted a method that simultaneously
alters element size h and configuration (h-refinement) and the polynomial degree p across neighboring elements
(p-refinement), providing for a so-called h–p-refinement strategy. The mortar element method (MEM)
[1,4,10,26] variationally minimizes the Lebesgue L2 norms of the discontinuities across non-conforming-
element boundaries. MEM has been shown to produce optimal convergence in solving the incompressible
Stokes equation [3], and has been demonstrated experimentally to produce excellent results when used as a
basis for DARe in 1D [27].

Non-conforming h–p (not always dynamic) adaptive MEMs have been developed for studying turbulence
[17,18], ocean simulation [20,25], flame front deformation [12], electromagnetic scattering [23], wave propaga-
tion [6], seismology [7] and other topics. However, MEM for p-type refinement has been cited as sometimes
causing instability [30]. Also, in most flows of interest to us, it is the nonlinear interaction of the different scales
that determines not only the structures that form but also their statistics and time evolution. This suggests that
reasonably high-order approximations are required in each element during much of the evolution. Thus, in the
present work we restrict ourselves to a non-conforming fixed-p, h-refinement strategy only and use an inter-

polation-based scheme to maintain continuity between non-conforming elements. This method [13,24] is akin
to the formulation developed in [5]; however, the latter deals with functionally non-conforming elements,
while the former relates to the geometrically non-conforming elements of interest here. We contrast this choice
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with other familiar DARe codes (e.g., [10]), which, while object-oriented, uses the MEM as the basis of its
dynamic adaptivity, but does not accommodate h-refinement. While the interpolation-based matching scheme
has been widely used for functionally non-conforming meshes, to the best of our knowledge, our implemen-
tation of it in the context of fully dynamic adaptivity is unique and new.
2.2. Discretization of a nonlinearly coupled dynamical PDE system

In order to focus on DARe methodology, we concentrate on the simplest nonlinearly coupled PDE system
that encompasses many of the difficulties in simulating fluid turbulence. Thus we discretize the 2D Burgers
equation, presenting in turn the spatial operators and the time discretizations. These sections are in part a
review of well-established methods but also provide implementation details unavailable elsewhere, and enable
us to discuss code design motivations.

The equation considered in this work is the advection–diffusion equation for velocity ~uð~x; tÞ:
ot~uþ~c � r
!
~u ¼ mr2~u; ð1Þ
where~c may be~u (so that (1) is the Burgers equation), or~c ¼~cðtÞ (a prescribed uniform linear-advection veloc-
ity) and m � Re�1 is the kinematic viscosity. This is to be solved in a spatio-temporal domain ð~x; tÞ 2 D��0; tf �
subject to the boundary and initial conditions
~uð~x; tÞ ¼~bð~x; tÞ for ð~x; tÞ 2 oD��0; tf �; ð2Þ
~uð~x; 0Þ ¼~u0ð~xÞ for ~x 2 D. ð3Þ
2.2.1. Variational approach to spatial discretization

Then the discretization of (1) starts from the following ‘‘weak’’ variational form: Find the trial function
~uð�; tÞ 2 U~b such that for any test function~v 2 U~0,
h~v; ot~ui þ h~v;C~ui ¼ �mhrvT
�

;ru
�

i; ð4Þ
where C :¼~c � r
!

is the advection operator and the inner product is (A.8). (See the appendix for the complete
mathematical details.) The treatment of (3) will not be made explicit but may be easily inferred from our gen-
eral discussion.

Assume that �D can be partitioned as in Table A.1. Adopt a Gauss–Lobatto–Legendre (GLL) basis, that is,
expand ul and vl using (A.6). Inserting these expansions into (4), we arrive at the semi-discrete ODE system
problem: Find the numerical solution ~unð�; tÞ ¼ ~/

T
uðtÞ 2 Ph;~pU~b such that for all~v ¼ ~/

T
v 2 Ph;~pU~0,
vTM
du

dt
þ vTCu ¼ �mvTLu; ð5Þ
collocated at K(p + 1)d mapped Lagrange node points (Table A.1), where M = diagkMk, C = diagkCk, and
L = diagkLk are the unassembled block-diagonal mass matrix, linear or nonlinear advection matrix (cf. [9,
Chapter 6]) and diffusion matrix, respectively. The respective d(p + 1)d-square matrix blocks for element Ek

are formulated in Appendix A.
Note that after assembly as discussed in Section 2.4, (5) must hold for the restriction~vj�Ek

¼ ~/
T

k vk of~v to the

kth element Ek, so that a coupled ODE system for ~unj�Ek
¼ ~/

T

k uk would in an assembled state be
Mk
duk

dt
þ Ckuk ¼ �mLkuk. ð6Þ
Assembly guarantees continuity of~un across all elements, which in turn is sufficient to keep ul
n 2 H1ðDÞ. There

are conforming and non-conforming element configurations, as illustrated in Fig. 1, and an interpolation-
based scheme to enforce continuity along a non-conforming interface is the subject of Section 2.4.
(Throughout the remainder of this paper ‘‘non-conforming’’ will refer to geometrically non-conforming
elements, keeping the polynomial degree p fixed in all elements.)
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2.2.2. Semi-implicit multistep time discretization

GASpAR employs semi-implicit multistep time discretization schemes. The diffusion is always solved fully
implicitly, the time derivative is approximated using a backward-difference formula (BDF) of order Mbdf [9,21]
and the advection term is approximated by an explicit extrapolation-based method (Ext) of order Mext [22].
Then the integral of (6) from tn�1 to tn is approximated by
Hn
kun

k ¼
Xn�1

m¼n�Mbdf

bm;n
bdfM

m
k um

k �
Xn�1

m¼n�Mext

bm;n
ext C

m
k um

k ; ð7Þ
where
Hn
k :¼ bn;n

bdfM
n
k þ mLn

k ð8Þ

is the spectral-element Helmholtz matrix. Although the matrices Lk and Mk in (6) were t-independent, they are
time-indexed in (7) and (8) because DARe will, in general, reconfigure the partition (Table A.1) over time. For
this reason, the coefficients bm,n are re-computed for each tn after a reconfiguration, as in the traditional
schemes cited, except that the timestep Dtm may vary with m as the smallest spectral-element diameter
hm :¼ minkhm

k (Table A.1) changes. The accuracy of solving (7) follows from many known SEM error esti-
mates, e.g., for the Helmholtz problem on conforming meshes [21, Section 2.3.6] or the Poisson problem
on non-conforming meshes [21, Section 5.5.2.1]. In Section 2.5, the solution of (7) is explained.

2.3. Implications for code design

The fully discretized advection–diffusion equation (7) brings up several issues impinging on code design.
First, all mesh information is separated from all other code objects, since element type information can be
encoded easily into the objects that require this distinction. Second, solution data must be available at multiple
times tm, so this information is provided in a data structure. Thus arise both element and field objects. The
former contains all d-dimensional mesh information, including the Gauss-quadrature nodes and weights
(Table A.1). The element object also contains neighbor-list information and the hierarchical element refine-
ment level / �log2 hk of each element Ek. The field object contains the data um quantifying the physical system
of interest at each tm.

The 1D basis functions, the derivative matrices and Gauss-quadrature nodes and weights (Table A.1) are
encapsulated in basis classes (objects), and the 1D matrices such as ((A.9), (A.10) and (8)) are objects that con-
tain pointers to the basis objects and to a local element object. Generally d-dimensional SEM matrices are not
constructed but are applied using 1D tensor–product matrix factors. High-level objects encapsulate the solu-
tion of (6) or other equations, and have common interfaces that allow the equations to take a single time inte-
gration step. In other words, all high-level equation-solver classes are used in the same way; they are
constructed using linked lists of elements, fields and multidimensional SEM objects that depend only on
the underlying mesh. Hence, the classes that handle DARe and enforce continuity between elements are inde-
pendent of the system being solved.

2.4. Continuity and global assembly of non-conforming elements

Conforming discretizations enforce continuity simply by assigning the same weighted-averaged~un values to
the coinciding node points~x~|;k ¼~x~|0 ;k0 along element edges oEk;s ¼ oEk0 ;s0 (Fig. 1a). This matching condition con-
sists of expressing the Ng global (unique) d.o.f. ug in terms of the local (redundant) d.o.f. as d(p + 1)d-vectors
uk, k 2 {1 , . . . ,K}. Generally Ng < Kd(p + 1)d. This expression is accomplished by using a Kd(p + 1)d · Ng

Boolean assembly matrix Ac (also called a scatter matrix):
u ¼ Acug. ð9Þ

The transpose AT

c performs the gather operation associated with the Ac scatter. In practice, Ac is never formed
explicitly but is instead applied.

In the non-conforming case oEk;s(oEk0 ;s0 and most boundary-node points are not coinciding (Fig. 1b). In the
present work, unlike in MEM, the interface matching does not alter the underlying function space U~b (Section



64 D. Rosenberg et al. / Journal of Computational Physics 215 (2006) 59–80
2.2). To illustrate, consider the non-conforming mesh in Fig. 1b. For the moment denote the global nodes,
those nodes residing on the east parent edge oE1;1, by~xg;i; i 2 f2; 5; 8g, and denote the nodes on the west child

edges, oE2;3 and oE3;3 by~xj; j 2 f9; 12; 15; 18; 21; 24g. A globally continuous function can always be found in
U~0 in a proper subspace of the span of globally discontinuous functions /jð~xÞ that interpolate from the local
nodes ~xj. Therefore the weak formulation of (1) implies functions /g;ið~xÞ exist that are globally continuous
across D, span U~0, and interpolate from the global nodes ~xg;i. Therefore the matrix A, that generalizes the
Boolean scatter matrix Ac used in the conforming-element formulation, can be conceived as having entries
/g;ið~xjÞ, and accommodates both conforming and non-conforming elements. It is convenient to factor
A = UAc, where U is the interpolation matrix from global to local d.o.f. and Ac is locally conforming. Another
illustration appears in [31, Eqs. (14)–(16)].

To accommodate Dirichlet boundary conditions (2) into the solution, we employ a masking projection �,
which is diagonal with unit entries everywhere except corresponding to nodes on Dirichlet boundaries, where
there are zero entries. Any field ~/

T
u ¼~u 2 U~b may be analyzed as~u ¼~uh þ~ub, where uh :¼ U�Acug constructs

the projection~uh :¼ ~/
T
uh 2 U~0 of~u, that is, its homogeneous part, and ub :¼ u � uh constructs~ub 2 U~0, which

vanishes at the interior nodes ~x~|;k 2 D n oD. Inserting this analysis into (5) (noting~v 2 U~0 ) v ¼ U�Acvg)
and repeating the time discretization leading to (7), we arrive at the following linear equation to solve for
ug at each timestep:
vTHu ¼ vTf 8vg ) AT
c �UTHU�Acug ¼ AT

c �UTðf �HubÞ; ð10Þ

where H :¼ diagkHk is symmetric positive-definite (8) and we have denoted all past-time terms from time-
derivative expansion and advection in (7) by f. The preconditioned conjugate-gradient (PCG, [32,36]) algo-
rithm is used to solve (10). While (10) shows explicitly that the l.h.s. matrix is symmetric non-negative-definite,
it is not in a form easily solved in parallel. Left-multiplying (10) by U�Ac, we get the following local problem
to solve for uh:
�Huh ¼ �ðf �HubÞ; where � :¼ U�AcA
T
c �UT. ð11Þ
The direct stiffness summation (DSS) matrix � is coded so that the gather and scatter are performed in one
operation (Section 2.6.3), which reduces parallel communication overhead [34].

Two other operators must be introduced that help maintain H1ðDÞ continuity. The inverse multiplicity

matrix W is diagonal, computed by initializing a collocated vector gl
~|;k ¼ 1 8~|; k; l, setting child boundary

nodes to 0, performing g  UAcA
T
c UTg, then setting
W l;l0

~|;k;~|0;k0 ¼
dl;l0=gl

~|;k if ~x~|;k ¼~x~|0 ;k0 coincides with a global node,

0 otherwise.

(

For example, corresponding to Fig. 1a and b the diagonals of W are
ð1; 1; 1
2
; 1; 1; 1

2
; 1; 1; 1

2
; 1

2
; 1; 1; 1

2
; 1; 1; 1

2
; 1; 1Þ and ð1; 1; 1; 1; 1; 1; 1; 1; 1; 0; 1; 1; 0; 1; 1; 0; 1

2
; 1

2
; 0; 1

2
; 1

2
; 0; 1; 1; 0; 1; 1Þ;

ð12Þ

respectively. After a DSS operation (11) the true global d.o.f., nodes 2, 5, and 8, carry all the information held
by nodes 9, 12, 15, 18, 21, and 24, so for the purpose of the PCG solve the latter give zero W entries in (12).
Given that global inner products in the PCG solve are collected from local contributions from each element
(i.e., Table 1, the lines involving W), the W zeros prevent double counting when computing these products,
and prevent non-global d.o.f. (e.g., child edge nodes) from contributing. Note also that in Fig. 1b, the W en-
tries for nodes 17 and 20 have value 1/2, as expected for nodes such as these that lie on conforming edges. The
H1 ‘‘smoothing’’ operation in the PCG algorithm also uses W. In smoothing, we have that �g ¼ Sg, where
S :¼ U�AcA

T
c W. Smoothing acts only on quantities all of whose d.o.f. have already been distributed to global

d.o.f. using DSS. The result of smoothing is a quantity that is interpolated properly to the child edges and that
is expressed without multiple counting at multiple local nodes that represent the same physical location. The
W matrix weights the operand g so that the respective sums on the parent (global) edge nodes (nodes 2, 5, and
8 in the case above) contribute to the result �g just once each, and the child edge nodes receive their �g values
from the parent edge nodes by interpolation.



Table 1
PCG algorithm modified for non-conforming element meshes

uh = 0 // initialize homogeneous term
r ¼ �ðf �HSubÞ // initialize residual
w = 0 // initialize search vector
q1 = 1 // initialize parameter
while not converged:

e = SP�1r // error estimate
q0 = q1, q1 = rTWe // update parameters
w e + wq1/q0 // increment search vector
r0 ¼ �Hw // image of w

a = q1/wTWr 0 // component of uh increment
uh uh + aw // increment uh along w

r r � ar 0 // increment residual
end

u = Sf(uh + ub).
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2.5. Modified preconditioned conjugate-gradient algorithm

It is important to modify the well-known PCG algorithm in order to solve (11) in the non-conforming case.
The modifications stem from the requirement that the iteration residuals r and the search directions w corre-
spond to functions~r � ~/

T
r and ~w � ~/

T
w belonging to H1ðDÞd . The CG algorithm searches the global d.o.f.

space for the solution to the linear equation. So that we may continue to use the local matrix forms, however,
we must also mask off all Dirichlet nodes (if any exist), which are not solved for. The � matrix (11) masks off
these nodes in such a way that the new search direction ~w 2 H1ðDÞd . Additionally, in all cases in the CG iter-
ation where a quantity~g must remain in H1ðDÞd , we explicitly ‘‘smooth’’ it by using the smoothing operator, S
(cf. Section 2.4). Note that it is critical that the inhomogeneous boundary term ~ub belong to H1ðDÞd in (11);
thus, the smoothing matrix S is applied to ub before H is. However, the non-smoothed boundary term must be
added after the convergence loop in order to complete the solution. Note also that the final smoothing oper-
ation follows the addition of the boundary condition and therefore cannot be masked; hence the distinction of
the final matrix Sf :¼ UAcA

T
c W.

With these considerations we present in Table 1 the PCG algorithm for the assembled local problem (11)
modified from the conforming-elements case, here for non-conforming elements. Preconditioning is handled
by the matrix P�1. GASpAR includes block- and point-Jacobi preconditioners. For the test problems pre-
sented in Section 3, a point Jacobi preconditioner has proven to be adequate. In general, the preconditioned
quantity must be smoothed, as indicated in Table 1.

2.6. Adaptive mesh formulation

2.6.1. Element-mesh hierarchical configuration

We now employ non-conforming connectivity to carry out dynamic adaptivity. Recall that the global
domain D is initially covered (Table A.1) by a set of disjoint (non-overlapping) elements Ek. Each of these ini-
tial elements becomes a tree root element, identified by a unique root key kr for that tree. At each level
‘ 2 {‘min, . . . , ‘max}, an element data structure provides both its own key k and its root key kr. For any level
‘, the range of 2d‘ valid element keys will be k 2 ½2dlkr; 2d‘ðkr þ 1Þ � 1� because the refinement is isotropic (that
is, it splits an element at the midpoints of all its edges to produce its 2d child elements). Conversely, we obtain
the level index from the element key using
‘ ¼ blog2d ðk=krÞc. ð13Þ
In order to ensure all keys are unique, the first kr :¼ 1 and the next is k0r :¼ 2d‘maxðkr þ 1Þ, and so on.
After elements Ek are identified (‘‘tagged’’) for refinement or coarsening at level ‘, three steps are involved in

performing DARe: (1) performing refinement by adding a new level of 2d child elements E2d k; . . . ; E2d ðkþ1Þ�1 at
level ‘ + 1 to replace each Ek, or else coarsening 2d existing children Ek; . . . ; Ekþ2d�1 into a new parent Ebk=2d c; (2)
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building data structures for all element boundaries, which hold data representing global d.o.f. and accept gath-
ers (ATu segments) or perform scatters (Aug segments); and (3) determining neighbor lists for data exchange.
Neighbor lists consist of records (structures) that each contain the computer processor id, element key k, root
key kr and boundary id s 2 {0, . . . , 2d � 1} of each neighbor element that adjoins every interface. In refining or
coarsening, the field values for each child (parent) elements are interpolated from the parent (child) fields. For
simplicity, the interior of each element boundary (i.e., excluding the vertices) is restricted to an interface
between one coarse and at most 2d�1 refined neighbors. Thus, at most one refinement-level difference will exist
across the interior of an interface between neighboring elements.

In GASpAR, the data structures that represent global d.o.f. at the inter-element interfaces are referred to as
‘‘mortars.’’ These structures are not to be confused with the mortars used in MEM; however, they serve as
templates for that more general method. Recalling Fig. 1b as a paradigm, in general the mortars contain node
locations and the basis functions of the parent element boundary (edge in 2D, or face in 3D). The mortar
structures represent the same field information for the parent and child edges; their nodes coincide with the
nodes of the parent edge, and they interpolate global d.o.f. data to the child edges, as described above. The
mortar data structures are determined by communicating with all neighbors to determine which interfaces
are non-conforming. This communication uses a voxel database (VDB) [17]. A VDB consists of records con-
taining geometric point locations, a component id that tells what part of the element Ek (in 2D, edge
oEk;s; vertex 2 o2Ek;s, etc.) the point represents, an id of the element that contains the point, the root id of that
element, and some auxiliary data. Two VDBs are constructed: one consists of all element vertices, and one
consists of all element edge midpoints. With these two VDBs, we are able to determine whether a relationship
between neighbor edges is conforming and also determine the geometrical extent of the mortar. The VDB
approach can also be used for general deformed geometries in two and three dimensions, as long as adjacent
elements share well-defined common node points.

The algorithm classes that carry out DARe operate only on the element and field lists. The SEM solvers
adjust themselves automatically to accommodate the dynamic addition and removal of elements that occurs
as a result of DARe.

2.6.2. Refinement and coarsening rules
The refinement and coarsening method takes as input only the local indexes of the elements to be refined

and coarsened. Before refinement or coarsening is done, the tagged elements are checked for compliance with
several rules. For refinement, the rules are: (R1) the refinement level must not exceed a specified limit ‘max and
(R2) at most one level may separate neighbor elements. Rule R2 must be followed also for interfaces at peri-
odic boundaries. Rule R2 is enforced by tagging a coarse element for refinement too, if it has an already
refined neighbor tagged for further refinement. Enforcement of R1 and R2 is most easily effected by building
a global list of keys of all elements tagged for refinement, and comparing the local refinement lists with it.

We may not coarsen an element under any of the conditions: (C1) it is a root; (C2) any of its 2d � 1 siblings
are not tagged for coarsening; (C3) it appears in a refinement list; or (C4) rule R2 would be violated. To
enforce C4, we use a query-list, i.e., a global list of each element key k, its parent key ºk/2dß, and its level ‘
(13). The query-list contains keys gathered from all processors. The following procedure is then used.

(1) Build a global ‘‘refinement’’ query-list (RQL) from the keys in the local refinement list.
(2) Find level limits ‘max and ‘min from the coarsen list.
(3) Reorder the current local coarsen list from ‘max down to ‘min.
(4) Looping from ‘ = ‘max down to ‘min: build a global ‘‘coarsen’’ query-list (CQL) from the keys in the cur-

rent local coarsen list; and for all keys k in the local coarsen list at the current ‘, if any refined neighbor is
in the CQL and no refined neighbors are in the RQL, then k is retained in the current coarsen list; other-
wise it is deleted.

(5) Check finally that all elements in the local coarsen list have all their siblings also tagged for coarsening.
The sibling elements of k are identified by having the same parent key ºk/2dß.

Note that the local refinement lists are checked and possibly modified before checking and modifying the
coarsen lists.
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2.6.3. Communicating boundary data

The mortar data structures contain all the data to be communicated between elements during each appli-
cation of the DSS � (11) or smoothing operation S. Communication of element-boundary data requires net-
work communication on parallel computers. This involves initialization and operation steps. Initialization
establishes element-processor connectivity by bin-sorting global node indexes and having each processor
examine the nodes from one bin, to determine element-neighbor lists. This method has been suggested in
[9, Section 8.5.2] but to our knowledge has never before been implemented. All coinciding mortar-structure
nodes~xg;i ¼~xg;i0 are uniquely labeled by their Morton index Mð~xg;iÞ, computed by digitizing the d coordinates
and partially interleaving the B bits along each coordinate l. So for al :¼ min~x2Dxl:
Mlð~xÞ :¼ xl � al

Dx
þ 1

2

� �
) Mð~xÞ :¼

Xd

l¼1

2ðl�1ÞBMlð~xÞ 2 0; . . . ; 2dB � 1
� �

;

where Dx is chosen so that Mlð~xÞ 2 0; . . . ; 2B � 1
� �

8~x. For P processors, a collection of P bins
Bl; l 2 f0; . . . ; P � 1g, is generated that partitions the dynamic range (over all processors) of the Morton in-
dexes. Processor l partitions its list of indexes into the bins, sending the contents of Bl0 to processor l 0, where
the information is combined with those from other processors and then sent back to processor l. After this
initialization step, every processor is informed of which other processors share which mortar nodes. The oper-
ation step communicates the data at any node point~xg;i with all other processors that share it. These data are
extracted from the containing element by using the pointer indirection provided by Mð~xg;iÞ. The field values at
~xg;i are summed during DSS or smoothing and reassigned at~xg;i also by indirection. To reduce communication,
shared~xg;i residing on the same processor are summed before being transmitted to the other processors that
share the~xg;i. At the end of the operation step, the field values at multiply-represented global nodes are iden-
tical. This gather–scatter procedure ensures that the DSS output are locally available immediately after com-
munication. One benefit of this gather–scatter method is that it allows communication to be separated from
the geometry, because Morton indexes are essentially unstructured lists of local data locations. However, a
future upgrade of GASpAR will use VDBs to obviate the need for the bin-sort initialization step, which
requires information already provided in the VDBs.
2.6.4. Error estimators

Elements are tagged for DARe by the use of an a posteriori criterion. The spectral estimator criterion, mod-
ified from [18,27], uses local Legendre spectra to estimate the quadrature and truncation errors and the spec-
tral convergence rate in each element �Ek ¼ ~#kð½�1; 1�dÞ. First, the mapping ul 	 ~#kð~nÞ of each solution
component ulð~xÞ is transformed to spectral coefficients ul;l0

j along a 1D line in coordinate nl0 by [9,
(B.3.13)], averaging over all the nl00 6¼l0 . The convergence rates kl;l0 are fit using jul;l0

j j � Cl;l0 e�kl;l0 j [18, (18)]
with j 2 {p � 3, . . . ,p}, except that instead of ‘‘equivalent’’ 1D coefficients [18, (17)], we combine fits using
kl :¼ mind

l0¼1k
l;l0 . The solution error el

est is estimated using [18, (19) l.h.s.], except again instead of ‘‘equivalent’’
1D coefficients, we estimate the first term of [18, (19)] by

Pd
l0¼1ðul;l0

p Þ
2 and the second term by

ð
Qd

l0¼1ðCl;l0 Þ2
R1

pþ1
dje�2kl;l0 jÞ1=d . Thus, �Ek is refined, if for some l, el

est is above a threshold value et or if kl is
below another threshold kt. For coarsening, for all l, all 2d sibling elements must have their el

ests below some
value ccet < et, computed by multiplying by a ‘‘coarsening multiplier’’ cc. This prevents ‘‘blinking’’, i.e., refined
elements being immediately coarsened again. In conjunction with the spectral estimator, we can often obtain
better overall accuracy convergence by thresholding on the �Ek-maximum second derivative magnitude in any
coordinate and taking a logical OR of that criterion with the spectral estimator. While the high polynomial
degrees will help the spectral estimator, given the variety of our future applications, new refinement criteria
may be more effective. The investigation of refinement criteria appropriate, e.g., for intermittent features is
a major outstanding problem in adaptive numerical solution of PDEs that we will consider in future work.

3. Results for adaptive (non)linear advection–diffusion simulation

Our test problems examine various aspects of (1). The primary goal is to investigate the solution temporal
and spatial convergence when adaption is used. Thus we have selected problems with analytic solutions, so
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that errors may be determined exactly, instead of only by comparison, e.g., to a uniformly highly refined con-
trol solution. Tests begin with the simplest aspect of (1) and progress through more difficult problems until the
behavior of the full 2D nonlinear, multi-component version of (1) is considered. We do not use filtering for
any of these test problems.

For each test the BDF3 and Ext3 schemes are used for the time-derivative and the advection terms in (7),
respectively, unless stated otherwise. This requires that all the required time levels tm�1 be initialized,
m 2 {1, . . . ,max(Mbdf,Mext)}. A logical OR of the spectral and second-derivative error estimators or just the
second-derivative estimator is used for the adaption criterion. The spectral estimator is normalized by the ini-
tial-condition norm k~u0k1, and the second derivative is normalized by k~u0k1=L2, where L is the longest global
domain length. The threshold kt is always set at 1 when used.

Except where we compare with published results, the viscosities are somewhat arbitrary. We reiterate that
one of our motivations in considering (1) is that it exemplifies many of the characteristics of the Navier–Stokes
equations of interest in simulating turbulence, including the dependence on m via Re. However, we note that a
recent paper [31] concludes that the MEM and the interpolation-based connectivity for non-conforming
elements may manifest inconsistencies that affect convergence, which a small viscosity can prevent.

For the purposes of our tests, we perform adaption after every 10 timesteps except if stated otherwise. In
practice, this is not optimal as the adaptivity overhead can overtake the computational savings achieved by
reducing the required number of d.o.f. In general, it is more meaningful and efficient to adapt at a fraction
of a fiducial timescale, say an eddy turnover time. The refinement criteria are applied to each component
of (1) that is solved for.

In order to compare an adaptive solution, we use an ‘-control grid. This is a grid that uniformly covers the
domain with elements at the finest resolution ‘max = ‘. For all spatial convergence tests that have control solu-
tions, we will also provide a single processor speed-up factor representative of the adaptive solutions, by giving
the ratio Tcontrol/Tadaptive of the total control and adaptive cpu run times. Naturally, this factor is only to be
used for reference since the speed-up will, in general, depend not only on the solution and its refinement
criteria and thresholds, but also the adaption interval, and expansion degree, p.

3.1. Adaptive heat-equation solution results

For the linear case~c ¼~cðtÞ, the fundamental solution of (1) is a Gaussian d-periodized in D ¼ ½0; 1�d :
ul
að~x; tÞ :¼ rð0Þd

rðtÞd
X1

ı1;...;ıd¼�1
exp�

~x�~x0 þ~ı�
R t

0
~cðt0Þdt0

rðtÞ

 !2

ð14Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
for t > �rð0Þ2=4m ðul
a ð~x; tÞ :¼ 0 otherwiseÞ, where rðtÞ :¼ rð0Þ2 þ 4mt; rð0Þ ¼

ffiffiffi
2
p

=20 is the initial e-folding

width, m = 0.1 and~x0 ¼
Pd

l¼1~e
l=2 is the initial peak location. To compute (14), we truncate summands of va-

lue less than 10�18 of the partial sum. The simplest version of (1) is the heat equation, where~c ¼~0. The goal
here is to determine the temporal and spatial convergence when there is no advection. The initial condition (3)
is computed on K = 4 · 4 elements from (14) at t = 0 and d = 2, and the mesh is refined until refinement le-
vel 6 ‘max. Both the spectral estimator with threshold et = 10�3 and second-derivative estimator with thresh-
old of 0.25 were used. The coarsening multipliers (to prevent blinking) for each were set to cc = 0.5 and 0.25,
respectively. A BDF2 scheme is used here for the time derivative.

3.1.1. Temporal convergence of the adaptive heat-equation solution

We examine time convergence by advancing to tf = 0.05 for various constant Dt. From (14) curves of rel-
ative L2 error e ¼ k~un �~uak2=k~u

0
ak2 vs. Dt are plotted for several maximum-refinement levels ‘max and for

degrees p, in Fig. 2a–d. The control grid here consists of 16 · 16 elements. The BDF2 and Ext2 are globally
second-order schemes, so if the solution is well resolved spatially, we expect to find a slope of �2 in a log–log
plot of error vs. Dt. Indeed this is seen in Fig. 2a–d; each panel shows a sequence of three curves for the refine-
ment levels ‘max 2 {0, . . . , 2}, where ‘max = 0 implies that no refinement is done. For the curves that are spa-
tially resolved, the error is linear with slope 2.04. Even at low p, the solution is well resolved if DARe is used,
even at ‘max = 1. If the refinement thresholds et where increased slightly, we would see a larger reduction in the



Fig. 2. Plots of normalized error log10ðk~un �~uak2=k~u
0
ak2Þ vs. log10Dt for (a–d) the heat equation and (e–h) advection-dominated flow (1),

for different polynomial degrees p as labeled. Each upper panel shows curves for up to three maximum refinement levels ‘max indicated in
the legend; each lower panel shows four maximum refinement levels. For the heat equation, The 2-control solutions (thin curves) overlie
the ‘max P 1 adaptive curves. As p increases, the curves converge.
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number of d.o.f. required, but our accuracy would decrease, requiring a higher ‘max before accuracy (at small
Dt) is restored. As p increases, there is less need for DARe, as is expected due to the smoothness of the
solution.
3.1.2. Spatial convergence of the adaptive heat-equation solution

We now consider the effects of polynomial degree p. The maximum refinement is fixed at ‘max = 2. At time
tn a dynamic Courant-limited timestep
Dtn
6 Co= max

~|2 1;...;pf gd ;k2 1;...;Knf g;l;l02 1;...;df g

4m

ðDn
~|;kÞ

2
þ
jul0n
~|�~el ;k þ ul0n

~|;k j
2Dn

~|;k

 !
ð15Þ
is used with a fixed Courant number Co = 1.0, where Dn
~|;k :¼ minl2 1;...;df gj#ln

k ð~n~|�~elÞ � #ln
k ð~n~|Þj (Table A.1). We

can set Co to a reasonably high value because a semi-implicit scheme is used. The solution is advanced to
tf = 0.5, enough to observe the solution coarsening as it decays. Only the control runs use the variable time-
step; the adaptive runs use as a fixed timestep the Courant-limited value of the corresponding control case at
t = tf. The initial mesh is the same as Section 3.1.1.

Fig. 3a shows the exponential spatial convergence characteristic of all our tests. We expect from (A.3) and
Section 2.2.2 that an infinitely smooth solution will spectrally converge along a straight-line plot of
log10ðk~un �~uak2=k~u

0
ak2Þ vs. p. For lower p, the 2-control solutions are better than the adaptive runs, but the

curves merge quickly, as we would expect for such a smooth problem. The adaptive curves show some slight
concavity for this problem. The low-p error source is likely the elliptic nature of (10), so that coarse elements
propagate their error throughout the mesh. Fig. 4b shows that even for varying K (Fig. 4a), the error over time
behaves monotonically, agreeing very closely with the control profile. We find that the adaptive cases for all
but p = 2 case run significantly faster (Tcontrol/Tadaptive � 3) than the controls for this problem.
3.2. Adaptive linear-advection simulation results

Next we consider the linear advection-dominated Eq. (1) with d = 2, m = 10�4 and ~c ¼~e1. This tests the
ability of the code to follow a localized translating distribution. The initial state (3) is given by (14) at
t = 0. The spectral estimator in this problem is turned off. The second-derivative criterion is set to et = 1 with
a coarsening multiplier of cc = 0.5.
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3.2.1. Temporal convergence for adaptive linear advection

Temporal convergence is tested as in Section 3.1.1, except that only the second-derivative criterion is used.
The final tf = 0.06, and we begin with a K = 4 · 4 element mesh. We present the results in 2e–h. The spatially
resolved curves in each plot have an average slope of 2.95. Even at high degree p, the error is Dt-independent
for the unrefined mesh. For lower p, the error decays at the order of the time-stepping method only if there are
several refinement levels, indicating that the solution is well resolved spatially only at higher ‘max. Thus, in
order to achieve a temporal error OðDt3Þ, refinement is necessary.

Fig. 2e–h also shows 3-control runs corresponding to the adaptive solutions, indicated by thin curves that
all overlie the ‘max = 3 curves. As p increases, less refinement is required to achieve the same accuracy that
3-control does.

3.2.2. Spatial convergence for adaptive linear advection

We turn to the effects of polynomial degree p on the solution error. The maximum refinement level is fixed
to ‘max = 3. Here, a Courant-limited timestep (15) is again used with Co = 0.2. The solution is advanced to
tf = 0.2, enough to see several DARe cycles occur (Fig. 4c). The initial mesh is the same as in Section
3.2.1. Spectral error decay can be seen in Fig. 3b, which also shows the 3-control solutions. The adaptive solu-
tion error decays nearly identically as does the 3-control, suggesting again that interpolation introduces no
deleterious effects for this problem.
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Fig. 4c–d shows typical time series of the element count K and the error. Clearly, adaptivity does not alter
the monotonic error behavior. The 3-control grid (K = 32 · 32 elements) error for p = 8 is plotted in Fig. 4d
and is nearly identical to the adaptive error. Adaptivity clearly provides a significant savings in the number of
d.o.f. required for a given accuracy. Indeed, the single-processor time savings is significant too; we find that
Tcontrol/Tadaptive � 10 for most p.

Note that when we set m = 0 for this problem, we obtain energy conservation to about six digits for the
‘max = 3 adaptive case, and to about seven digits in the ‘max = 3 control run, up to tf ¼ L=j~cj ¼ 1.
3.3. 2D Burgers equation

We now examine the nonlinear ð~c ¼~uÞ version of (1). The goal is to investigate the solution errors as the
mesh resolves and tracks the stationary or propagating fronts generated and sustained by the nonlinear cou-
pling of the system. We introduce a class of exact 2D solutions as follows. Note that any d solutions ql(y, t) to
the 1D Burgers equation can be cast into d dimensions by substituting
~uð~x; tÞ ¼
Xd

l¼1

~jlqlð~jl �~x;~jl �~jltÞ; where ~jl �~jl0 :¼~jl �~jldl;l0 ; ð16Þ
into (1) [14]. If ql has period Yl w.r.t. y, then taking integer 2jl;l0=Y l makes periodic boundary conditions for
~x 2 ½�1; 1�d appropriate. An initial condition (3) for a kind of straight ~jl-perpendicular front is derived from
qlðy; 0Þ :¼ � sinðpyÞ þ ûl
2 sinð2pyÞ. ð17Þ
The first problem is the classical Burgers stationary front, which is compared with and without adaptivity to
previous results. The second problem will consider the vector nature of (1) by simulating the collision of two
oppositely translating oblique fronts. The third case is a curved front, i.e., a propagating radial N-wave.

3.3.1. Stationary Burgers front

The stationary Burgers front is the classical solution to (1), exhibiting a straight front developing across the
x1-direction. We compare with analytic values the maximum derivative magnitude jox1 u1jmax and the time tmax

at which the maximum occurs. To compare with the literature [2], we set m = 0.01/p, ûl
2 ¼ 0 and ~jl ¼~e1dl;1.

The problem is initialized with K = 4 · 1 grid of a specified degree p. A BDF3/Ext3 scheme is used for the
time-derivative and advective terms, respectively. We initialize from (17) only at t = t0, and integrate using
a BDFM/ExtM scheme to provide values at tM (M = 1,2). A non-adaptive and an adaptive case with max-
imum refinement ‘max = 3 are considered. In the non-adaptive case, the element edges lie along
x1 = 0,±0.05, ± 1, whereas in the adaptive case, the elements are initially uniform. The second-derivative error
criterion is used in this problem applied to ~u, and the threshold and coarsening multiplier are et = 1 and
cc = 0.5, respectively.

Table 2a presents the non-adaptive results from GASpAR and from [27]. Besides the comparison in Tables
2a and b, we obtained analytic solutions using (16) combined with the 1D formula [37, (4.10)] computed using
Gauss–Hermite quadrature, and verified jox1 u1jmax to seven digits against the reported value [2]. Thus, we have
also verified that the L2 accuracy of the solution is consistent with the derivative accuracy implied by Tables 2a
and b. We note that the p = 5 case is comparatively poor (cf. [27]), possibly due to differences between the
basis functions in the two methods [2], but our non-adaptive errors in tmax for our case are consistently better,
while for p > 5 the jox1 u1jmax errors are comparable (cf. [27]).

Table 2b shows the results from the adaptive case and the reference and control solutions, where reference
refers to a solution on a non-adaptive grid with K fixed as at the adaptive solution at t = tmax. Thus, it offers a
solution computed with roughly as many d.o.f. as the adaptive solution, and hence requiring about the same
computational effort, disregarding adaptivity overhead. Clearly, resolving the front is very challenging as evi-
denced by the reference solution for p = 5 actually diverging, and good solutions not being obtained until
p > 13. The control solutions are all nearly identical to the adaptive ones, suggesting that our refinement cri-
teria enable DARe to capture the formation of the front accurately, at a significantly reduced number of d.o.f.
Indeed, on one processor, the computational times for the DARe cases are also reduced by a factor of about 7



Table 2
For the stationary Burgers front

p Mavriplis [27] GASpAR

tmax joxujmax tmax jox1 u1jmax

(a) Non-adaptive results

5 0.53745 167.227 0.5320 228.38977
9 0.50611 154.019 0.51074 148.04258

13 0.51103 151.496 0.51072 151.69874
17 0.51071 152.076 0.51045 152.09104
21 0.51023 152.004 0.51047 151.99624
1 0.51047 152.00516

p Adaptive Reference Control

tmax jox1 u1jmax tmax jox1 u1jmax tmax jox1 u1jmax

(b) Adaptive, reference, and control results

5 0.52679 224.36164 – – 0.52674 224.37214
9 0.51095 153.39634 0.52635 227.53596 0.51095 153.39633

13 0.51030 150.03130 0.51219 181.02024 0.51030 150.03130
17 0.51048 152.25110 0.51082 149.57372 0.51048 152.25110
21 0.51047 152.00556 0.51021 147.22940 0.51047 152.00565
1 0.51047 152.00516
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compared with the control runs. Keeping in mind that on a single processor, no load balancing is required, we
do not expect this level of efficiency for most turbulence problems. However, for the case where we are resolv-
ing largely isolated structures in an otherwise noisy background, we expect to see significant reductions in
overall computational costs using DARe.

3.3.2. N-wave problem

The radial N-wave solution combines a d-dimensional Cole–Hopf transformation of (1) and a heat-
equation solution (generalizing [37, (4.6) and (4.40)])
~u ¼ �2mr
!

ln v vð~x; tÞ ¼ 1þ a
td=2

exp�ð~x�~x
0Þ2

4mt
. ð18Þ
The N-wave emanates from~x0 ¼ ð~e1 þ~e2Þ=2. For this test, we initialize at t0 = 5 · 10�2 and set m = 5 · 10�3

and a = 104. Dirichlet boundary conditions (2) on D ¼ ½0; 1�2 are imposed at each time by evaluating (18)
on oD. The initial grid has K = 4 · 4 elements, and we consider only the adaptive case with ‘max = 4. The
refinement criteria are the same as in Section 3.2.

Fig. 5 presents six snapshots of the u1 component of a typical N-wave system numerical solution, and illus-
trates the refinement patterns characteristic of all the runs. The solution has reflection symmetries, so for simplic-
ity only one quadrant is shown. As the semicircular front propagates outward, the mesh refines to track it; while
in the center the velocity components grow more planar, and the mesh coarsens. The front does not steepen in
this problem, as it does in the planar front problem (Section 3.3.1); it simply decays as it propagates outward.

We set p = 14 and advance from t = t0 to tf = 0.11 for various constant Dt to produce the timestep error-
convergence curve in Fig. 6a. This time interval was enough to provide a number of DARe events; neverthe-
less, the solution converges with Dt, at order (slope) 3.01.

To check spatial convergence, the solution is advanced from t = t0 to tf = 0.11 by using variable p and Dt

(15) but fixed Co = 0.15. Fig. 6b shows the final L2 error vs. p. As with the linear advection case, the error
behaves spectrally for a finite time integration.

3.3.3. Colliding front problem

Here we take (17) with ûl
2 ¼ ð1=2Þdl;1, an initial condition that develops two translating, colliding fronts,

and use (16) to get a 2D bi-periodic vector solution to the system (1). We retain m = 0.01/p, and to set the
fronts oblique to the axes put ~jl ¼ ð~e1 þ 2~e2Þdl;1. The mesh initially has K = 4 · 4 elements of degree p = 8.



Fig. 5. For the p = 8 adaptive radial N-wave solution of (1) with ~c ¼~u and m = 5 · 10�3, initialized by (18), surface plots of u1ð~x; tÞ,
showing~x 2 ½1

2
; 1�2 and K/4 = 88, 121, 139, 172, 181, 190 as t = 0.18, 0.33, 0.48, 0.65, 0.81, 1.00. Black and yellow curves show nodes and

element edges, respectively.
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Initialization is as in Section 3.3.1, except that we use a BDF2/Ext2 scheme for time integration. The second-
derivative error criterion is used in this test, with threshold and coarsening multiplier et = 8 and cc = 0.2,
respectively. The maximum refinement is ‘max = 5. Because the mesh only has to resolve discrete fronts as they
develop, translate, merge and decay there is clear potential for computational savings by using adaptivity: sim-
ply reducing the number of elements on which to compute. Here, we wish to illustrate this potential and to
verify that the error in the solution is consistent with the results in Section 3.3.1. We do not consider a control
run for this problem.

In Fig. 7 are presented six snapshots during the evolution of the u1 component of the colliding-fronts sys-
tem, zoomed to one quadrant of the domain. The mesh refines around each of the oppositely propagating
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fronts as they steepen, merge and begin to decay. The dash-dotted curve of Fig. 8 shows the number K of ele-
ments increasing monotonically before and during the merger, and decreasing, as expected, after the merger is
complete at about t = 0.12. Moreover, Fig. 7 shows that DARe occurs only in regions localized around the
steepening or translating fronts. The maximum number of adaptive elements is maxtK = 3136, while the con-
trol solution would require K = 16,384. This is a coverage fraction of about 19%, suggesting that adaptivity in
this problem certainly offers a huge reduction in the required number of d.o.f.

Fig. 8 provides the time series for the maximum-magnitude and L2 solution errors (unnormalized) of u1, as
well as the relative error of j~j1 � r

!
u1j. The solution errors are reasonably well behaved. As expected, there is

much more variation of the derivative error. The analytic values for jox1 u1jmax and the time, tmax at which this
maximum occurs are 213 and 0.1280, respectively. From our results, we find that jox1 u1jmax ¼ 222 and
tmax = 0.1283, which is entirely consistent with the stationary results presented in Table 2b.

Finally, Fig. 9 shows a snapshot solution and relative error field of an even more challenging problem,
namely the same two colliding fronts orthogonally crossed by a stationary front. Also, to better exercise h-
refinement, the degree was reduced to p = 6 from p = 8 in the previous test. The reduction in overall accuracy
is consistent with the p-convergence results in Fig. 6b. The relative L2 error is ku1

n � u1
ak2=ku1

nk2 ¼ 5:8� 10�3.
The element distribution in Fig. 9b shows that the error estimation coincides well with the actual point-wise
error field.

4. Discussion and conclusion

We have presented an overview of a geophysical and astrophysical spectral-element adaptive refinement
(GASpAR) code, concentrating on the continuous Galerkin discretization of a vector (generalized advec-
tion–diffusion) equation to illustrate the construction of the weak and collocation operators and to highlight
aspects of the code design. We have provided a detailed description of the underlying mathematics and code
constructs that establish connectivity and maintain continuity between conforming and non-conforming
elements. From this basis, we have presented a new dynamic adaptive mesh refinement (DARe) algorithm
for the spectral-element method, and in particular, described 2D refinement criteria and enumerated rules
for self-consistent refinement and coarsening of a non-conforming element mesh. We propose several prob-
lems that have analytic time-dependent solutions, in order to test quantitatively the ability of the code to sim-
ulate accurately 2D phenomena arising as a result of linear and nonlinear advective and dissipative dynamics.

Using DARe, GASpAR can potentially generate a substantial savings both in the number of d.o.f. com-
puted and in the computation time required to update them, despite the added overhead required by the adap-
tivity. These results suggest an obvious extension of this work, to apply DARe to broader classes of problems
and systematically examine performance metrics and operational considerations with the goal of minimizing



Fig. 7. For the p = 8 adaptive colliding front solution of (1) with~c ¼~u and m = 10�2/p, initialized by (16) and (17) with~jl ¼ ð~e1 þ 2~e2Þdl;1

and ûl
2 ¼ 1

2
dl;1, surface plots of u1, showing~x 2 ½�1; 0�2 and K/4 = 28, 52, 112, 352, 784, 481 at the time abscissas noted in Fig. 8. Black and

yellow curves show nodes and element edges, respectively.
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adaptivity overhead, especially in a parallel environment. For example, for different turbulence problems, what
is the optimal frequency (e.g., w.r.t. eddy turnover time) at which to perform adaptivity, in order to reduce
overhead cost? This extension would also discuss load-balancing strategies that mitigate communication
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Fig. 9. For the p = 6 adaptive double colliding fronts solution of (1) with ~c ¼~u and m = 10�2/p, initialized by (16) and (17) with
~j1 ¼~e1 þ 2~e2, ~j2 ¼~e2 � 2~e1, û1

2 ¼ 1
2

and û2
2 ¼ 0, surface plots of (a) u1

n and (b) ðu1
n � u1

aÞ=ku1
nk1, showing ~x 2 ½0; 1�2 and K/4 = 1018 at

t = 0.10. For clarity, the node lines are not shown, but the element boundaries are now black.
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bottlenecks, and optimize work-load distribution: when should repartitioning be done so as to minimize the
cost of communicating to other processors?

The test problems show that DARe can be very beneficial for resolving isolated structures. But in practice,
how likely is it that only a few isolated structures will exist? And how significant to the flow evolution are these
structures, to the extent that their being resolved by DARe would preserve the overall flow statistics? These
questions are the focus of current and future efforts and we will report on these investigations in regard to
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decaying turbulence in a subsequent paper. A useful approach to these questions provides that the fields solved
for need not be those on which adaption criteria operate directly. For example, while the velocity is actually
solved for in (1), the adaption criteria might operate on kinetic energy, vorticity, or enstrophy. Arguably, some
fully developed turbulent flows viewed in terms of the fundamental fields may be too intricate to benefit from
DARe. Nevertheless, when viewed w.r.t. an appropriate functional, some relevant structures, when resolved,
may allow for accurate simulation of the significant dynamics and statistics of the overall flow.
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Appendix A. Spectral-element formalism

In this appendix, we summarize results from the SEM literature, and our notation. Table A.1 shows the
hierarchy of basic formulas progressing from one 1D element, through K1 1D elements, to K d-dimensional
elements. Any dependent variable u = u(n) may be approximated by its projection Ppu on the space Vp of
polynomials of degree p, using u-values on any p + 1 distinct nodal points nj:
Table
Hierar

and 1S

Doma

Nodes

Weigh

Basis:
u ¼ Ppuþ Epu � Ppu :¼
Xp

j¼0

uðnjÞ/j; ðA:1Þ
where Epu is the pointwise error and /jðnÞ :¼
Q

j0 6¼jðn� nj0 Þ=ðnj � nj0 Þ denotes the Lagrange interpolating
polynomials. Taking nj and wj from Table A.1 implies the quadrature
hui1 :¼
Z 1

�1

uðnÞdn ¼
Xp

j¼0

wjuðnjÞ þRpuðn0Þ; ðA:2Þ
A.1
chy of spectral-element formulas, where Lj is the standard Legendre polynomial of degree j and norm ðjþ 1

2
Þ�1=2

; f 	 gðxÞ :¼ f ðgðxÞÞ

ðxÞ :¼ 1 ðx 2 SÞ
0 ðelseÞ

�

in: n 2 [�1,1];
x 2 ½�1; 1� ¼

SK1

k¼1
�E

1
k , where �xk�1; xk ½� E1

k :¼ #kð� �1; 1½Þ has length h1
k :¼ xk � xk�1 > 0) E1

k

T
E1

k0 ¼ ; if k 6¼ k0;

~x 2 �D ¼
SK

k¼1
�Ek , where Ek :¼ ~#kð� �1; 1½dÞ has diameter hk :¼ maxlmax~x;~x02�Ek

jxl � x0lj and Ek
T

Ek0 ¼ ; if k 6¼ k0.

: nj :¼(j + 1)th least root of ð1� n2Þ d
dn Lp;

xj,k :¼#k(nj), where #kðnÞ :¼ xk�1 þ 1
2 h1

kð1þ nÞ; k 2 f1; . . . ;K1g;
~x~|;k :¼ ~#kð~n~|Þ, where nl

~| :¼ n|l and ~#kð~nÞ is invertible but not necessarily linear.

ts: wj:¼2/p(p + 1)Lp(nj)
2;

wj;k :¼ j d
dn#kðnjÞjwj;

w~|;k :¼ jdetr
!

~n

~#kð~n~|Þj
Qd

l¼1w|l .

/j0 ðnÞ ¼ wj0
Pp

j¼0Ljðnj0 ÞLjðnÞ=
Pp

j00¼0wj00Ljðnj00 Þ2 !
n!nj

dj;j0 ;

/j;kðxÞ :¼ 1�E
1
k
ðxÞ/j 	 #�1

k ðxÞ !x!xj0 ;k0

1; xj;k ¼ xj0 ;k0 ;
0; otherwise;

.

�

/~|;kð~xÞ :¼ 1�Ek
ð~xÞ/~| 	 ~#

�1

k ð~xÞ !
~x!~x~|0 ;k0

1; ~x~|;k ¼~x~|0 ;k0 ;
0; otherwise;

�
where /~|ð~nÞ :¼

Qd
l¼1/|l ðnlÞ.
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where Rp :¼ �22pþ1 p3ðpþ1Þðp�1Þ!4

ð2pþ1Þð2pÞ!3 ðd=dnÞ2p is the residual operator [35] and n 0 2 ]� 1,1[. Then the mean-square
error is bounded as
hðEpuÞ2i1 / p1�2Q
XQ

q¼0

huðqÞ2i1 ðA:3Þ
for any order Q of square-integrable derivative [9, (B.3.59)]. Thus if u is infinitely smooth then Ppu converges
to u spectrally.

Now let [�1,1] be covered by K1 disjoint 1D elements E1
k as in Table A.1 (noting that nonlinear invertible #k

may sometimes be preferable). Then u may be approximated by its projections Pk;pu on the space Vh1;p of
piecewise polynomials of degree p on the E1

k . That is, (A.1) generalizes to
u ¼
XK1

k¼1

ðPk;puþ Ek;puÞ; Pk;pu :¼
Xp

j¼0

uðxj;kÞ/j;k; ðA:4Þ
where Ek;pu :¼ Epðu 	 #kÞ 	 #�1
k . Then (A.2) generalizes to
hui1 ¼
XK1

k¼1

Z xk

xk�1

uðxÞdx;
Z xk

xk�1

uðxÞdx ¼
Xp

j¼0

wj;kuðxj;kÞ þRk;puðx0kÞ; ðA:5Þ
where Rk;pu :¼ ðh1
k=2Þ2pþ1

Rpðu 	 #kÞ 	 #�1
k and x0k 2 E1

k .
Generalizing further, assume a d-dimensional problem domain D can be partitioned as in Table A.1. Now

generalizing (A.4), one may approximate a field uð~xÞ by its projections Pk;~p u on the space Vh;~p of piecewise
polynomials of degree pl in coordinate xl on the Ek. That is, (A.4) generalizes to
u � Ph;~pu :¼
XK

k¼1

Pk;~pu; Pk;~p u :¼
X
~|2J

uð~x~|;kÞ/~|;k; ðA:6Þ
where J :¼ ~| j |l 2 0; . . . ; plf gf g. The appropriate approximation of a vector
~u ¼
Xd

l¼1

ul~el � Ph;~p~u ¼ ~/
T
u

uses ~/ with entries ~/
l

~|;k :¼ /~|;k~e
l and u with entries ul

~|;k :¼ ulð~x~|;kÞ, where~el denotes the Cartesian unit vectors.
For scalars u, (A.5) generalizes to
hui :¼
Z
� � �
D

Z
uð~xÞdd~x ¼

XK

k¼1

Z
� � �
Ek

Z
uð~xÞdd~x �

XK

k¼1

X
~|2J

w~|;kuð~x~|;kÞ ¼: huiGL. ðA:7Þ
Finally, variational formulation depends on the inner product from (A.7):
hu; vi :¼ huvi �
XK

k¼1

X
~|2J

w~|;kuð~x~|;kÞvð~x~|;kÞ ¼: hu; viGL ðA:8Þ
for scalars, h~u;~vi :¼
Pd

l¼1hul; vli for vectors, hu�; v
�i :¼

Pd
l;l0¼1hul;l0 ; vl;l0 i for tensors, and so forth. This implies

a norm kuk2 :¼ hu; ui1=2
GL. The norm kuk1 :¼ maxK

k¼1max~|2Jjuð~x~|;kÞj is also used.
Now define the function spaces
U~b :¼ ~u ¼
Xd

l¼1

ul~el jul 2 H1ðDÞ8l and ~u ¼~b on oD

( )

H1ðDÞ :¼ f jf 2 L2ðDÞ and oxl f 2 L2ðDÞ8lf g.
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Searching the piecewise polynomial subspace Ph;~pU~b(U~b for a solution to (4) leads to (5), where
Ml;l0

~|;~|0 ;k :¼ h~/
l

~|;k;
~/

l0

~|0 ;kiGL ¼ d~|;~|0d
l;l0w~|;k; ðA:9Þ

Cl;l0

~|;~|0 ;k :¼ h~/
l

~|;k;C
~/

l0

~|0 ;kiGL ¼ dl;l0w~|;k~c~|;k � r
!

/~|0 ;kð~x~|;kÞ; ðA:10Þ

Ll;l0

~|;~|0;k :¼ hr
!
~/

l

~|;k;r
!
~/

l0

~|0;kiGL ¼ dl;l0
X
~|002J

w~|00;kr
!

/~|;kð~x~|00;kÞ � r
!

/~|0 ;kð~x~|00;kÞ;
and ~c~|;kðtÞ :¼~cð~x~|;k; tÞ. The matrix L for deformed Ek (nonlinear ~#k) can also be constructed (e.g. [9]), and is
supported in GASpAR.

As an example of global assembly, for the mesh partition in Fig. 1a, (9) takes the following explicit form
(suppressing zero-valued and l > 1 blocks):

For the mesh in Fig. 1b, the explicit form of (9) for the non-conforming assembly matrix A = UAc is (sup-
pressing zero-valued and l > 1 blocks)

Note that the A entries corresponding to the child-node rows (see Fig. 1b) are not Boolean but that every row
sum is unity. This result is to be expected because A must accommodate interpolation of a constant solution
(e.g., ug,i = 1 "i) across a non-conforming interface.
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